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Abstract

While considerable efforts have been made to model the effects of grain coarsening, there has been little experimental verification of
these models. Using serial sectioning techniques, the full 3-D morphology of 2098 b-titanium grains in Ti–21S are analyzed and directly
compared to grain coarsening theories. The experimental grain size distribution and the distribution in the number of grain faces are
shown to have a close comparison to the predictions of the steady-state size distribution from a number of simulations and analytical
theories. The geometric factor of the growth rates is determined by measuring the mean curvature of the grain faces. It is found that, on
average, the grains with an average of 15.5 faces have a zero integral mean curvature of the grain faces, higher than the predicted value of
13.4 faces. This difference is suggested to be due to the non-random nearest-neighbor effects within the grain network.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

One of the more commonly observed microstructures is
the arrangement of single-phase polycrystalline grains
forming a network of irregular polyhedra. At elevated tem-
peratures, the arrangement of grains will evolve such that
the average grain size increases, leading to a decrease in
the total interfacial area of the system, a process commonly
referred to as grain coarsening. Understanding the struc-
ture and evolution of grain networks is critical for a wide
array of materials science problems, including the evolu-
tion of grain interfacial textures, phase transformations
and prediction of materials properties at elevated tempera-
tures. Furthermore, similar space-filling cellular network
structures are found in other scientific disciplines including
gas–liquid foams and biological cells.

While there have been many theories and simulations
formulated to predict the evolution of the microstructure
during grain coarsening [1–12], there have been very few

experimental verifications of these phenomena, and exist-
ing information has been based almost exclusively on
experimental data gathered from individual two-dimen-
sional (2-D) cross-sections [13,14]. While some statistical
comparisons can be made using 2-D stereological tech-
niques, direct determination of grain topology and inter-
face curvatures requires knowledge of the 3-D
morphology of the grains in the structure.

Some of the earliest work applying space-filling grain
structures to solid materials systems was by Smith
[1,15,16]. Later Mullins and von Neumann [2,3] showed
that the evolution of the grain boundary interfaces is pro-
portional to the local mean curvature for that interface,
and thus the total growth rate of the grain, dV

dt , is given by

dV
dt
¼ �McH ð1aÞ

H ¼
Z

Faces

1

R1

þ 1

R2

� �
dS ð1bÞ

where M is a mobility constant for the grain interface, c is
the interface energy and H is the integral mean curvature
of the grain faces, defined in Eq. (1b), where R1 and R2
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are the principal curvatures of a small patch with area S,
summed over all of the grain faces (thus excluding curva-
ture at the triple lines). This is often normalized by the
grain size by:

dV
dt

1

V 1=3
¼ McG ð2Þ

where G represents the normalized integral mean curvature
of the grain faces, and is related to the growth rate of the
grain. Von Neumann showed that in two dimensions the
integral mean curvature of area-filling grains can be com-
pletely determined by counting the number of faces of a
grain, and that grains with more than six faces will have
a positive growth rate, grains with fewer than six faces have
a negative growth rate, and those grains comprising exactly
six faces in two dimensions have a zero growth rate and
will not grow or shrink until they undergo a topological
change.

The relationship between the grain shape and its growth
rate in three dimensions is considerably more complicated
than in the 2-D case due to the extra degree of freedom in
three dimensions, and thus it cannot be determined solely
by the number of grain faces. For 3-D systems, Cahn [4]
showed that the integral mean curvature of convex bodies
is related to the mean caliper diameter of that body. More
recently, this was generalized by MacPherson and Srolovitz
[11] for all closed bodies, where the normalized growth rate
of a grain is related by:

G ¼ 1

V 1=3
2pL� 2p

6

Xn

i¼1

ei

 !
ð3Þ

where L is the mean width of the grain and
Pn

i¼1ei is the
summation of the triple line lengths, e, of the grain. The
mean width is related to the integral mean curvature by
the simple relation, H ¼ 2pL. The term 2p

6

Pn
i¼1ei describes

the total curvature of the triple lines for the grain, assuming
that the triple lines have the ideal dihedral angle of 2p/3.
This then provides an exact solution for the evolution of
individual grains within the network; however, it does
not describe the average behavior of the grain network as
a whole.

In order to directly compare to these theories, the full 3-
D structure of the grains needs to be determined. In large
part due to recent developments in 3-D experimental and
quantitative analysis techniques [17–19], it has recently
become feasible to make measurements in three dimensions
for relatively large ensembles of grains (P1000 grains) in
solids [20,21]. In this work, we have employed serial sec-
tioning to reconstruct the grain shapes of 2098 b grains
in a titanium alloy and make direct comparisons to these
theories. The grain size, interface curvature and number
of grain faces of each grain is measured directly, and these
results are compared to current theories of 3-D grain evo-
lution. The results show the importance of considering not
only the average grain topology, but also the topology of
the nearest grain neighbors.

2. Procedure

Serial sectioning was used to measure the 3-D micro-
structure of Ti–21S, a b-stabilized titanium alloy provided
by TiMet Corp, with a composition of Ti–15.4Mo–2.9Nb–
2.9Al–0.17Si–0.29Fe–0.12O. As received from TiMet, the
alloy was fully recrystallized and annealed at 843 �C for
20 min, providing a uniform equiaxed grain structure with
a mean grain diameter of 39 lm. To verify that the micro-
structure was near a steady-state condition, the as-received
material was heated at 830 �C for 4 and 12 h, leading to a
2-D average grain diameter of 53.6 and 121.6 lm, respec-
tively. Two-dimensional analysis of the grain size distribu-
tion normalized to the average grain size showed that it
was self-similar with the as-received sample. To maximize
the number of grains in the serial sectioning volume, the
as-received material was used in the serial sectioning
analysis.

The removal of material between each section was per-
formed by a Struers TegraPol semi-automatic polisher,
which applies a constant pressure to the sample on the pol-
ishing cloth for a fixed amount of time, providing a reliable
material removal rate for each section. The polishing was
accomplished using a two-step polish. In the first step,
the specimen was polished for 2 min using 3 lm diamond
slurry to remove the majority of the material. The second
step used a 0.04 lm silica slurry, which provides a final sur-
face finish appropriate for the optical micrographs. Using
this method, 200 optical micrograph sections were col-
lected, with a mean section spacing of 1.48 lm, which pro-
vided approximately 25 sections per average-sized grain.

To measure the geometry of the grain interfaces accu-
rately, it was necessary to collect 2-D images that main-
tained a high image resolution while still containing a
large number of grains within the field of view. Thus a
montage of 8 � 5 optical micrograph images (using a total
objective magnification of �500, with an optical resolution
of �0.45 lm) was collected for each section using a Zeiss
AxioVert Optical Microscope. Each image overlapped its
neighboring images, allowing for the images to be stitched
together to form one seamless image that was approxi-
mately 1000 lm � 550 lm for each section. The contrast
at the grain boundaries was greatly enhanced by precipita-
tion of a-Ti at the grain boundaries prior to sectioning,
which was achieved by heat treatment at 725 �C for
15 min. The a-Ti was then easily etched using Krohl’s etch-
ant, providing the necessary contrast in the optical images.
The a-Ti precipitation did not detectably change the shape
of the grain boundaries, thus the a acts purely as a decora-
tion for the grain boundaries and it does not affect grain
topology.

To create the image stack, the sections must be aligned
with each other. A coarse scale, long-range image align-
ment was performed, following a similar technique to Wall
et al. [22]. A geometric pattern was etched into the side of
the sample, perpendicular to the sectioning plane. In this
instance, a series of 10 � 10 lm channels were etched into
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the side of the sample using a Focused Ion Beam (FIB)
(FEI Nova 600 DBFIB) before serial sectioning. These
channels are revealed at the edge of the sample in cross-sec-
tion [23]. Channels parallel with the sectioning direction
provided fiducial marks for aligning the images, while
channels at a known angle from the sectioning direction
provided a section-by-section depth calibration. When
viewed from the sectioning plane, the cross-section of the
channels can be observed at the edge of the sample, provid-
ing a long-range alignment of the images so that the first
image can be directly aligned with the last image in the
serial sectioning stack.

After the images were aligned, the individual grains were
segmented within the images so that each grain had an
unique identifier associated with it. The first step in this
process was to identify the grain boundaries within each
2-D section. The identification of the grain boundaries
was performed by thresholding the brightness values of
each image so that all the a-Ti is white and all the b-Ti
grains are black. Not all of the grain boundaries are fully
coated with a, leaving some gaps in the grain boundary
interfaces within the images. Additionally, some a precipi-
tated within the b grains. The majority of intragranular a
was removed automatically by using a size rank filter, elim-
inating any white region that was significantly smaller than
the grain boundary network in the image, and any remain-
ing artifacts were removed by manual image processing.

The gaps in the grain boundaries were filled using a
watershed segmentation algorithm which also labels each
of the grains with an unique identifier. A similar process
was used in prior work to automatically segment particle
boundaries in a two-phase system [24]. Using this method,
a 3-D Euclidian distance function is applied to the stack of
images, which labels each voxel in the image with the neg-
ative of the minimum distance from that point to the near-
est interface, thus the centers of grains become minima
within the image. Here an algorithm was used that allows
for the non-cubiodal voxels present in this serial sectioning
data [25]. The distance function of the 3-D stack is then
processed by a 3-D watershed algorithm which labels each

grain uniquely and fills in any missing gaps in the grain
boundary network [26]. Because the grains are typically
not perfectly equiaxed, a watershed segmentation will often
over-segment the structure, placing more boundaries in the
image than are actually present. Here this artifact was cor-
rected by using the methodology described by Rowenhorst
et al. [24], wherein the local minima in the Euclidian dis-
tance map (which should approximate the grain centers)
are used to make an estimate of the grain size. Any bound-
aries that occur within the radius from the grain center
have a high probability of being false, and therefore are
removed. Further details are provided in the work cited
above.

A final sub-pixel alignment of the images was achieved
by minimizing the net movement of the area centers of each
grain from section to section, similar to the procedure out-
lined by Rohrer et al. [27]. Because the fiducial marks allow
for alignment of the first section with the last, any long-
range drift in the sub-pixel alignment was removed by sub-
tracting a linear interpolation of net translations through
the stack.

3. Results and discussion

3.1. Statistical distributions

Fig. 1 shows the final 3-D reconstructions of the Ti-b
grain structure, with over 4300 grains within the dataset.
Fig. 1a shows the reconstruction of the grains within the
region of interest with some of the outside grains removed
to reveal the internal grain structure. The grains near the
boundary of the analysis volume must be removed in an
unbiased fashion. Simply removing any grain that inter-
sects the edge of the volume would preferentially remove
large grains, since large grains have a larger surface area
and thus have a higher probability of intersecting the
boundaries of the reconstructed volume. Therefore any
grain was removed whose center of mass lies within a dis-
tance of 2hRi from the edge of the reconstructed volume,
where hRi is the mean grain radius, 19.5 lm. Because the

Fig. 1. (a) Reconstruction of 4380 b grains from 200 serial sections, of which 2098 grains were analyzed. The entire reconstructed volume is
1115 � 516 � 300 lm3. (b) Sampling of individual grains with varying topology and size. As expected, larger grains tend to have more grain faces.

D.J. Rowenhorst et al. / Acta Materialia 58 (2010) 5511–5519 5513



Author's personal copy

center of mass does not depend on the size of the grain, this
approach avoids preferential selection and removal of large
grains from the set being analyzed. This left 2098 grains in
the unbiased data set.

Fig. 1b shows the reconstructions of a selection of grains
in the structure with varying sizes and numbers of faces,
illustrating the expected trend that larger grains tend to
have more faces than smaller grains. This is shown clearly
in Fig. 2, where the spherical equivalent grain radius is
plotted as a function of the number of faces of the grain.
The grain radius is determined by measuring the volume
of each grain by counting the number of voxels associated
with that grain. The number of grain faces in the experi-
ment was determined by counting the number of grains
that were direct nearest-neighbors with the voxels that
described the central grain, not including the diagonal pix-
els (though testing showed no significant difference between
including or excluding the diagonal voxel neighbors). Fig. 2
shows that for each number of faces there is a distribution
of grain sizes, which remains constant at about ±5 lm
(ignoring face classes that contain a small number of
grains).

The Grain Size Distribution (GSD) of the Ti-b grains is
shown in Fig. 3, where the spherical equivalent grain radius
has been normalized to the mean radius so that it can be
directly compared to other grain growth simulations,
including the results from a Surface Evolver simulation
[6], a phase-field simulation [8] and a Monte Carlo simula-
tion [28]. Additionally, the analytical result from Pande
and McFadden is presented (the value of the stochastic var-
iable a = 5 was used as it provided the best fit to the distri-
bution) [29]. Overall it is seen that all the simulations match
the shape of the experimental distribution very well. The
tails of the distribution are well described by the analytical

theory, as well as the Monte Carlo simulation and the
phase-field simulation. The distribution from the Surface
Evolver is somewhat noisier and there is some disagree-
ment especially in the tail of the distribution at larger grain
sizes. This is most likely due to the small number of grains
in that simulation, especially when compared to the size of
the simulation domain, thereby introducing boundary
effects in the simulation that could significantly affect the
statistical representation of the structure.

Fig. 4 plots the distribution in the number of grain
faces for each grain. The average number of faces for
the system was found to be F ¼ 13:7, which is very close
to the average number of grain faces in the simulations
(F ¼ 13:7 for the phase-field simulation and 13.5 for
the Surface Evolver). Also, the distribution in the num-
ber of grain faces compares very well to these simula-
tions. At the larger number of faces there is again a
discrepancy between the Surface Evolver simulation and
the experimentally measured data. It should be noted
that the Surface Evolver simulation contained no grains
with more than 30 faces while the maximum in the
experimental data is 40 faces, and in the phase-field
simulation, where a larger number of grains are used,
the maximum number of faces is 39. This, then, further
suggests that the Surface Evolver simulation did not con-
tain enough grains to be representative of an infinite
sample. The Surface Evolver simulation, however, is
one of the few simulations that quantify the nearest-
neighbor topological interactions (which will be shown
to be important for understanding the evolution of the
structure), and thus the results are useful for comparison
with the experimental results presented here.
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Fig. 2. The spherical equivalent radius, R vs. the number of grain faces, F.
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Fig. 3. The spherical equivalent radius grain size distribution normalized
by the average grain size. The results from a Surface Evolver simulation
[6], a phase-field simulation [8] a Monte Carlo simulation [28] and an
analytical theory [29] are plotted for comparison.
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3.2. Grain boundary interface curvature

The normalized growth rate, G, of a grain can be calcu-
lated from the geometry of the surface of the grain. The
visualizations of the grain shapes (shown in Fig. 1) repre-
sent the grains as descretized triangulated surface meshes,
wherein the interface of the grain is described as a set of
vertex points, whose connectivity is described by a set of
triangles. The creation of the surface mesh is a critical step
in not only the visualization of the microstructure but also
the analysis. Note that in this article we will refer to the
geometric features of the grains as grain faces, triple lines
and quadruple points, and the features of the surface mesh
as triangles, edges and vertex points.

Since, as far as we are aware, grain face curvatures in a
3-D randomly packed network of grains have not been pre-
viously measured, it is important to provide some details as
to how these measurements were made. The most common
technique to convert a set of regularly gridded voxels (such
as a stack of images produced by serial sectioning) to a sur-
face mesh for computer-aided visualization is the Fast
Marching Cubes (FMC) algorithm [30]. In this instance,
as each point on the interface is shared between two or
more grains, an implementation of the Multiple Material
Fast Marching Cubes (MM-FMC) algorithm [31] was
employed. The MM-FMC algorithm has the distinct
advantage of maintaining the shared interfaces between
the grains and tracking the number of grains that connect
to each vertex point, thereby easily identifying the location
of the triple lines within the surface mesh. Fig. 5a shows the
results of the MM-FMC for one of the grains, with the
identified triple lines labeled in black.

As can be seen in Fig. 5a, one characteristic of FMC
algorithms on discrete structures is that the algorithm pro-
duces artifacts at the interface that create a stair-stepped
surface. To remove these artifacts, a Constrained Lapla-
cian Mesh Smoothing algorithm was implemented. In a
traditional Laplacian mesh smoothing, the position of ver-
tex i is given by vi and the new position, v0i is given by

v0i ¼ vi þ
k
N

XN

j¼1

vj � vi ð4Þ

where vj are the locations of the vertices that connect to vi,
N is the number of connected vertices and k is a weighting
factor, typically on the order of 0.1. This, then, is iterated
until the desired amount of smoothing is achieved (on the
order of 200 iterations). Fig. 5b shows the result of smooth-
ing the surface mesh without any constraint on the mesh
points. It is clear from the reconstruction that while the
algorithm has removed the artifacts from the FMC, the
curvature near the triple junctions and the faces has been
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Fig. 4. Distribution in the number of faces per grain. The results from a
Surface Evolver simulation [6] and a phase-field simulation [8] are plotted
for comparison.

Fig. 5. (a) The as-meshed grain structure. Black lines show the triple lines. (b) Smoothed mesh after 200 iterations with no constraint on the mesh points.
(c) Smoothed mesh, constraining the triple lines and a revolving set of randomly chosen constrained points on the grain faces after 200 iterations.
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significantly compromised. This is further shown by the
drastic change of the measured mean width from 4.2 lm
to 74.7 lm.

The desired result is to reduce the local curvature on the
grain faces while maintaining the sharpness of the triple
junction lines, as well as maintaining the long-range curva-
ture of the faces; thus, a constrained Laplacian smoothing
technique is used. Here, 90% of the vertex points in the sur-
face mesh that are shared by three or more regions (i.e. the
triple lines in the structure) are fixed in their original loca-
tions. In addition, a randomly selected set of vertex points
within the grain face (i.e. those that are shared by only two
regions) are also fixed. The random vertex points comprise
10% of the vertex points on the grain faces. For each iter-
ation of the Laplacian smoothing, a new set of the random
constrained points is chosen. The result of this procedure is
shown in Fig. 5c, where it is clear that triple junctions are
preserved, and the local high curvature areas on the faces
of the grains are eliminated.

For each reconstructed grain in the unbiased volume,
the normalized integral mean curvature of the grain faces,
G, was calculated using a modification of that outlined by
MacPherson and Srolovitz [11], wherein the mean width,
L is given by:

L ¼ 1

2p

Xm

i¼1

�ibi ð5Þ

where �i is the length of the ith triangle edge and bi is the
outside turning angle between the two triangles in the sur-
face mesh that contains m triangle edges [11]. Because the
MS-FMC algorithm clearly delineates the edges of the sur-
face mesh that are shared between three regions (i.e. at the
triple junctions of the grains, �TJ) and those triangle edges
of the surface mesh that are shared between only two re-
gions (the grain faces, �F), we can write Eq. (5) as:

L ¼ 1

2p

XmF

i¼1

�F
i bF

i þ
XmTJ

j¼1

�TJ
j bTJ

j

 !
ð6Þ

Substituting this for L in Eq. (3), we see that the second
summation of Eq. (6) is exactly equivalent to the triple-
junction length term of Eq. (3) if one assumes that the turn-
ing angles of all the triple lines are 60�. If this simplification
is removed and the exact triple-junction turning angle is
used for each triple junction, Eq. (3) can be rewritten as:

G ¼ 1

V 1=3

XmF

i¼1

�F
i bF

i

 !
ð7Þ

thus providing G without assumption of the triple-junction
geometry by only including those edges within the surface
mesh of the grains that belong only to the faces of the
grains. This methodology has the distinct advantage of
not requiring detailed knowledge of the triple-junction
geometry, which others have shown can make the measure-
ment of G problematic [32]. Nevertheless, calculations of G
which assumed an idealized 120� dihedral angle were also

made for comparison wherein the triple-junction length is
determined by fitting a third-degree polynomial to the ver-
tex points that make up the triple junction.

The normalized integral mean curvature of the grain
faces, G, as a function of the number of grain faces, F, is
plotted in Fig. 6. The small gray symbols represent G of
each individual grain in the analysis volume and the large
symbols represent the average value of G for all grains with
that number of faces, referred to hereafter as topologically
average values. Grains with G < 0 have a negative growth
rate, while grains with G > 0 have a positive growth rate.
Not surprisingly, the grains with the largest number of
faces tend to have the fastest positive growth rates, while
grains with few faces tend to have negative growth rates.
It is important to note that this analysis assumes that the
grain energy and mobility do not have a large effect on
the curvature of the boundaries, and that they are nearly
isotropic and can therefore be factored out of the integral
in Eq. (1). While this is not generally true for metallic sys-
tems, the low anisotropy in body-centered cubic materials
makes this a reasonable assumption, particularly when
comparing the average behaviors of the ensemble of grains,
where small differences are expected to be averaged out. It
can be seen that G is not a direct function of the number of
faces of the grain (as is the case in two dimensions), but
rather there is a distribution in G for a given number of
faces.

Also plotted in Fig. 6 is the topologically averaged G
using the assumption of 120� dihedral angles, as described
in Eq. (3). While the general trend is repeated, with partic-
ularly good matching near G ¼ 0, there are considerable
discrepancies at smaller face numbers. This is attributed
to the artifacts found in the reconstruction of the triple
lines (see Fig. 5c) due to the high curvatures near the triple
lines and quadruple points, which are most susceptible to
error. Grains with few faces tend to be the smallest grains,
and thus a larger fraction of their total interfacial curvature
is made of these triple lines, leading to a higher degree of

0 5 10 15 20 25 30 35 40
F (Number of Grain Faces)

-10

-5

0

5

10
-Ti grains

-Ti grains assuming
 120º dihedral angle

Wakai (2000)

Fig. 6. The normalized integral mean curvature of the grain faces, G, as a
function of the number of faces, F, per grain. The small symbols represent
each individual grain while the large symbols represent the average value
of G for each face class.
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error. Another source of the discrepancy may be the
assumption of isotropic triple lines; however, it is unclear
why grains with fewer faces would be more prone to this
error. In either case, the comparison shows the advantage
of isolating the integral mean curvature of the grain faces
in determining the geometric term in the growth rate.

Fig. 6 also includes the results of a vertex evolution
model by Wakai et al. [6]. The Surface Evolver data closely
matches the experimental results, with a similar crossover
point for zero G, but the overall slope of the curve is steeper
in the simulation. The analysis of the Ti-b grains showed
that grains with 15.5 averaged faces have a G of zero (a
grain can not actually be constructed with 15.5 faces and
the fractional face is a mathematical construct to determine
the zero growth condition); similarly, in the simulation by
Wakai, the measured zero growth rate occurs near F = 15.
Similar results have been found in 3-D liquid–gas foam net-
works [33], Monte Carlo simulations [34,35] and vertex
models [12]. These similar results suggest that in the present
materials system, the anisotropic effects of the grain bound-
ary energy and mobility do not play a significant role, and
that the geometry of the grain interfaces plays a significant
role in the growth rate of the grains. However, one would
expect this behavior would be significantly different in
materials systems where high anisotropy terms would dom-
inate the behavior.

A number of theories have suggested that the zero
growth rate should occur for grains that have F ’ 13.4
[7,10,36]. Unlike the Cahn–MacPhearson–Srolovitz con-
struction, these theories do not expect to make an exact
prediction of the growth rate of individual grains; rather,
they propose that the average behavior of a collection of
irregular polyhedra resembles that of a single idealized reg-
ular polyhedra with the same number of faces. It has been
suggested that a packing of regular polyhedra with approx-
imately 13.4 faces represents the lowest surface-area-to-vol-
ume ratio for a space-filling network, and consequently
that grains approximating these shapes should be stable
(neither growing nor shrinking) [7,10,36,37]. This is consis-
tent with the regular packing of space-filling objects, where
it is found that the ideal surface-area-to-volume ratio
occurs for a structure comprising one 12-sided polygon
and one 14-sided polygon [38]. It is interesting to note that
the average number of faces in the experimental data is
13.7, very close to the idealized value for the surface to vol-
ume ratio, but the measured zero growth occurs near 15.5
faces. One explanation for this difference is that the analyt-
ical theories predict the net curvature of a shape without
accounting for the interactions of the nearest-neighbor
grains. As will be shown, the nearest-neighbor interactions
between grains are not random, and therefore may have a
significant effect on predicting the growth rate of a given set
of topologically averaged grains.

Fig. 7 plots the average number of faces of each grain’s
nearest neighbors, m(F), vs. the number of faces per grain.
Again the topologically averaged values are also plotted
(dark squares). This analysis utilizes a much smaller num-

ber of grains than the set of 2098 unbiased grains because
here, not only must the central grain fall within the unbi-
ased dataset, but also none of its neighbors may intersect
the edges of the analysis volume, leaving 1075 grains in
the nearest-neighbor analysis. This further reinforces the
importance of collecting statistically large datasets if one
is to examine nearest-neighbor effects on a statistical basis.
The data are compared again to the Surface Evolver simu-
lation of Wakai. For all averaged face class values, the
average number of faces of the neighbors is always larger
than the average number of faces for the entire system
ðF ¼ 13:7Þ because, by definition, grains that have a large
number of faces are counted as a neighbor more frequently.
Again, a distribution in the average number of faces of a
grain’s neighbors is observed for a given topological class,
but the average non-linear behavior is consistent with the
Aboav–Weaire relation [13,39], which predicts that for a
3-D system the average number of faces of the nearest
neighbor is given by:

mðF Þ ¼ F � 1þ F þ lF

F
ð8Þ

where F is the average number of faces in the system and lF

is the second moment in the distribution of the number of
faces in the system. The least-squares fit of this equation to
all of the nearest-neighbor data is also included in Fig. 7,
and shows a very close correlation to the topologically
averaged data. The fit shows that m(F) / 1/F, but the fit
coefficients of 15.17 and 9.03 do not accurately reproduce
the calculated values for the average and variance, respec-
tively, for the system ðF ¼ 13:7; lF ¼ 30:7Þ. The discrep-
ancies in the fit values are most likely due to the
assumption that the distribution in the number of faces is
symmetric, whereas the experimental data clearly shows
that the distribution is not symmetric (see Fig. 4). Also
shown in Fig. 7 is the line m(F) = F, i.e. where the number
of average nearest-neighbor faces is equal to the number of
faces of the central grain. The averaged topological values

0 5 10 15 20 25 30 35 40
F

5

10

15

20

25

30

m
 (F

)

Ti -Grains
Wakai (2000)

m(F)=15.17-1+(15.17+9.03)/F

m (F) = F

Fig. 7. Plot of the average number of faces of the nearest-neighbor grains,
m(F), vs. the number of faces of the grains, F. The dashed line represents
the line along which the number of faces of a grain is equal to the average
number of faces of its neighbors, m(F) = F.
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cross this line at F = 15.5, the same value that represented
G ¼ 0 for the topologically averaged grains (Fig. 6).

To elucidate more clearly the nearest-neighbor correla-
tions, Fig. 8 plots G as a function of F � m(F), the differ-
ence in the number of faces of a given grain and the
average number of faces of its nearest-neighbor grains.
This relationship is linear and passes through the origin,
which indicates that, when grains have the same number
of faces as their neighbors (on average), G is zero. Grains
that have more faces than their neighbors tend to be grow-
ing, while grains that have fewer faces than their neighbors
tend to shrink. Fig. 7 and the Aboav–Weaire relationship
indicate that these correlations are not random, and grains
should not be considered to exist in a mean field; rather, the
topology of the grain is related to the neighborhood of the
grain, which in turn affects the grain growth.

The differences between the analytical theories and the
experimental findings shown in Fig. 6 are explained by
the linear relationship between the grain neighborhood
and the normalized integral mean curvature demonstrated
in Fig. 8. The analytical theories do not consider the grains’
nearest neighbors, resulting in the prediction of a zero geo-
metric growth rate for those grains with the ideal ratio of
surface area to volume (and thus the lowest magnitude
integral mean curvature), at F � 13.4. However, as shown
in Fig. 7, grains with 13–14 faces are surrounded by grains
that have on average a higher number of faces. The central
grains in this case would be surrounded by grains that are
growing; therefore, the central grains would have a nega-
tive growth rate. Glicksman et al. have presented this as
a possible explanation for the discrepancies between their
analytical results and simulations [36].

It is important to note that the phenomena reported
here represent the average behavior of the grains, and as
such do not describe the behavior of each individual grain.
However, the results do suggest that it is possible to con-

struct statistically based laws that predict the coarsening
behavior of grain networks without requiring detailed
information on the individual grains, as long as non-ran-
dom nearest-neighbor interactions are accounted for in
the predictions.

4. Conclusions

This paper presents the results of a serial sectioning
analysis of 2098 Ti-b grains in Ti–21S. From the recon-
struction, the 3-D grain size and number of grain faces is
determined unambiguously, allowing for direct comparison
to theories and simulations. It is found that the modern 3-
D theories compare very well with the experimental results.
Additionally, using a modified analysis of the MacPher-
son–Srolovitz formulation, the integral mean curvature of
the grain faces of the grains was determined without requir-
ing detailed analysis of the triple-junction geometry. These
results also compare well with simulations indicating that,
on average, the grains with between 15 and 16 faces should
have a zero growth rate in the polycrystalline system. It is
shown that this is the same number of faces for which, on
average, a grain has the equivalent number of faces as its
contacting neighbors. For grains with fewer than 15.5
faces, the contacting neighbors typically have more faces,
and thus these grains would be expected to shrink. For
grains that have more than 15.5 faces, the contacting neigh-
bors have fewer faces, thus grains with more than 15.5
faces would be expected to grow. This analysis shows the
importance of considering not only the average grain
topology, but also the topology of the nearest grain neigh-
bors when calculating grain growth rates and predicting
grain coarsening phenomena. Based on this data, it is sug-
gested that the non-random nearest-neighbor effects within
the grain network play a significant role in controlling
grain stability, and that the number of faces required for
stability (zero growth rate) is �15.5.
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